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Abstract

We consider the asymptotic expansion of the logarithmic derivative of the Airy
function Ai′(z)/Ai(z), and also its reciprocal Ai(z)/Ai′(z), as |z| → ∞. We
derive simple, closed-form solutions for the coefficients which appear in these
expansions, which are of interest since they are  encountered in a wide variety of
problems. The solutions are presented as Mellin transforms of given functions;
this fact, together with the methods employed, suggests further avenues for
research.

PACS numbers: 02.10.Ox, 02.30.Gp, 05.40.Jc

1. Introduction

The Airy function, Ai(z), which satisfies the second-order linear differential equation
Ai′′(z) − zAi(z) = 0, is a well-known and important ‘special’ function in mathematics
and physics. From it one can define two closely related functions, the logarithmic derivative
f (z) ≡ Ai′(z)/Ai(z) and its reciprocal g(z) ≡ Ai(z)/Ai′(z). These functions, significant in
their own right, satisfy the first-order non-linear Riccati equations f ′(z) + f (z)2 − z = 0 and
g′(z) + zg(z)2 − 1 = 0.

In this paper, we are interested in the asymptotic expansion of f (z) and g(z) on the cut-
plane C\(−∞, 0] as |z| → ∞. It is a relatively simple matter to show that these expansions
take the form3

f (z) ≡ Ai′(z)
Ai(z)

∼ −z1/2

[
1 −

∞∑
n=1

(−1)nFnz
−3n/2

]
, |arg(z)| < π (1)

3 It should be noted that differing notations are used throughout the literature.
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g(z) ≡ Ai(z)

Ai′(z)
∼ −z−1/2

[
1 +

∞∑
n=1

(−1)nGnz
−3n/2

]
, |arg(z)| < π, (2)

but it has been an enduring task to find simple, closed-form (as opposed to recursive) solutions
for the coefficients Fn and Gn. Recently, such a solution was found for Fn; however, the
derivation was indirect and consequently somewhat obscure [1]. Here, we provide details of a
much more direct derivation (which was only sketched in [1] a posteriori), together with the
corresponding solution for Gn, which is rendered accessible in the process.

There are two reasons why the results are of interest. First, these coefficients appear
(albeit often in disguised form) in a wide variety of problems (see, e.g., [2, 3] for an overview).
Specific examples include Brownian motion [4–8], graph theory and combinatorics [9–12],
queueing theory [13, 14], algorithm complexity theory [15], fluid flow [16] and the enumeration
of pointed triangular maps [17]. There is also a subtle link to the rational solutions of the
Painlevé II equation [18]. To have an explicit solution in the context of such problems is
clearly desirable, e.g., to study how Fn and Gn grow with increasing n. Second, the solutions
obtained have a precise mathematical form (a Mellin transform) which permits an extension
of the arithmetic functions Fn ≡ F(z = n) and Gn ≡ G(z = n) not just to the real line, but to
a semi-infinite strip in the complex domain. Such ideas have proven fruitful in the past (see,
e.g., [2]) and may offer a fresh perspective on the Airy–Riccati equations, although we do not
pursue that line of enquiry in any particular depth here.

2. Recursion relations and related

We begin by briefly discussing what is known or easily demonstrated.

(i) Based on the Riccati equations for f (z) and g(z) it follows that Fn and Gn satisfy quadratic
recursion relations of the form [3]

Fn =
(

3n − 4

4

)
Fn−1 +

1

2

n−1∑
k=1

FkFn−k (3)

Gn =
(

3n − 2

4

)
Gn−1 − 1

2

n−1∑
k=1

GkGn−k, (4)

where for notational convenience we define F0 ≡ −1 and G0 ≡ 1. Iteration of (3) and (4)
gives F1 = 1/4, F2 = 5/32, F3 = 15/64, F4 = 1105/2048, F5 = 1695/1024, etc and
G1 = 1/4, G2 = 7/32, G3 = 21/64, G4 = 1463/2048, G5 = 2121/1024, etc. Since
f (z)g(z) ≡ 1, we also have that Gn = Fn + �k=n−1

k=1 FkGn−k . These recursions provide
a computationally efficient way of calculating Fn and Gn for small values of n. They do
not, however, provide an explicit closed-form solution.

(ii) A different (but equivalent) set of linear recursion relations is obtained by first considering
the asymptotic expansions of Ai(z) and Ai′(z) as |z| → ∞ [19]:

Ai(z) ∼ 1

2
√

π
z−1/4 e− 2

3 z3/2

[
1 +

∞∑
n=1

(−1)ncnz
−3n/2

]
, |arg(z)| < π (5)

Ai′(z) ∼ − 1

2
√

π
z1/4 e− 2

3 z3/2

[
1 −

∞∑
n=1

(−1)n
(

6n + 1

6n − 1

)
cnz

−3n/2

]
, |arg(z)| < π,

(6)
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where the coefficient cn is given by

cn = �
(
3n + 1

2

)
�

(
n + 1

2

)
36nn!

. (7)

Through comparison with (1) and (2) these results imply that [3]

Fn = 12n

6n − 1
cn −

n−1∑
k=1

ckFn−k (8)

Gn = 12n

6n − 1
cn +

n−1∑
k=1

6k + 1

6k − 1
ckGn−k. (9)

In a sense these recursions are ‘less fundamental’ than those derived from the Riccati
perspective. Certainly (3) and (4) are encountered more often in practice.

(iii) Closed-form solutions for Fn and Gn can be obtained using (5) and (6), but they are
cumbersome and certainly not deserving of the adjective simple. Thus, by writing
f (z) = (d/dz) ln Ai(z) and using (5) in a formal sense to expand the logarithm, it
follows that

Fn+1 =
(

3n

2

)⎡
⎢⎣cn − 1

2

∑
k,l�1
k+l=n

ckcl +
1

3

∑
k,l,m�1
k+l+m=n

ckclcm − · · · +
(−1)n+1

n
cn

1

⎤
⎥⎦ . (10)

In the same vein, recognizing that g(z) = z−1(d/dz) ln[−Ai′(z)] and using (6), one can
show by expanding the logarithm that

Gn+1 =
(

3n

2

) ⎡
⎢⎣(

6n + 1

6n − 1

)
cn +

1

2

∑
k,l�1
k+l=n

(
6k + 1

6k − 1

) (
6l + 1

6l − 1

)
ckcl

+
1

3

∑
k,l,m�1
k+l+m=n

(
6k + 1

6k − 1

)(
6l + 1

6l − 1

)(
6m + 1

6m− 1

)
ckclcm + · · · +

1

n

(
7

5

)n

cn
1

⎤
⎥⎦ . (11)

Little attention seems to have been paid to these expressions, probably because they are
awkward to evaluate (after combining terms through symmetry, the number of distinct
terms is given by the partition function p(n) which increases rapidly with n). As a result,
(10) and (11) are not particularly useful or informative.

3. Main results and method of derivation

In what follows we will approach the problem differently, based on the line of reasoning
sketched in [1], and further inspired by [2]. This involves focussing on the analytic structure
of f (z) and g(z). By doing so we shall prove that for n � 1,

Fn = 3

2π2

∫ ∞

0

x3(n−1)/2

Ai2(x) + Bi2(x)
dx (12)

Gn = 3

2π2

∫ ∞

0

x(3n−1)/2

Ai′2(x) + Bi′2(x)
dx, (13)

3
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where Bi(z) is the second, linearly independent, solution of the Airy equation. These results
are concise and powerful, especially when it comes to studying the n → ∞ limit. Moreover,
each is expressed (to within a change of variable) as the Mellin transform of a given function.
This means that by replacing the integer n with a complex variable z one has a natural extension
of the arithmetic functions Fn ≡ F(z = n) and Gn ≡ G(z = n) to the complex domain,
provided that the range of z satisfies α < Re(z) < β so that the integrals converge. In this
instance α = 1/3 for F(z) and α = −1/3 for G(z), whilst β = ∞ for both.

We consider the derivation of (12) first and note as a starting point that the zeros of the
function Ai(z) in the complex plane are restricted to the negative real axis [19]. Thus the
function z−1/2Ai′(z)/Ai(z) is analytic everywhere on the cut-plane C\(−∞, 0]. We may
therefore choose to write for some fixed, finite (but otherwise arbitrary) value of N,

1

z1/2

Ai′(z)
Ai(z)

=
N∑

k=0

(−1)kFkz
−3k/2 + R

(f )

N (z), |arg(z)| < π, (14)

where F0 ≡ −1 and Fk for 1 � k � N is chosen from the sequence generated by (3) or (8).
Key to the following argument is the fact that, by construction, as |z| → ∞ the unknown
‘remainder’ term R

(f )

N (z) has the property

R
(f )

N (z) = O(|z|−3(N+1)/2), |arg(z)| < π. (15)

This is a consequence of (1) being a valid asymptotic expansion everywhere on C\(−∞, 0],
which implies that (15) holds by definition. Next we multiply each term in (14) by z(3n−2)/2,
with 1 � n < N , and then integrate along a circular arc, orientated anti-clockwise, of radius
ρ which starts at ρ e−i2π/3 and ends at ρ ei2π/3. Thus,∫

C

1

z1/2

Ai′(z)
Ai(z)

z3n/2 dz

z
=

∫
C

N∑
k=0

(−1)kFkz
−3k/2z3n/2 dz

z
+

∫
C

R
(f )

N (z)z3n/2 dz

z
. (16)

The first term(s) on the right-hand side of (16) may be integrated directly by making the
substitution z3/2 = ρ eiθ :∫

C

N∑
k=0

(−1)kFkz
−3k/2z3n/2 dz

z
= 2i

3

N∑
k=0

(−1)kFkρ
n−k

∫ π

−π

ei(n−k)θ dθ = 4π i

3
(−1)nFn. (17)

For the ‘remainder’ term on the right-hand side of (16) we make the observation, using the
property outlined in (15), that in the limit ρ → ∞,∣∣∣∣

∫
C

R
(f )

N (z)z3n/2 dz

z

∣∣∣∣ <
CN

ρ3(N−n+1)/2
(18)

for some N -dependent constant CN. Clearly for 1 � n < N this term vanishes as ρ → ∞,
and since we will shortly take the limit ρ → ∞, we can drop this term hereafter. The last
step before letting ρ → ∞ is to consider the integration contour on the left-hand side of (16).
Since the integrand is analytic on the cut-plane, it is possible to deform the contour onto one
which runs along two rays: the first from ρ e−i2π/3 to 0 and the second from 0 to ρ ei2π/3 (by a
limiting procedure one can include z = 0). Now letting ρ → ∞ and rearranging one has that

Fn = (−1)n
3

4π i

∫
>

Ai′(z)
Ai(z)

z3(n−1)/2 dz, (19)

where the wedge contour > runs from ∞ e−i2π/3 to 0 and from 0 to ∞ ei2π/3. Since the choice
of N was arbitrary, it follows that (19) is valid for all n � 1.

4
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To show that (19) leads to (12) we make two further observations. Taking the
parametrization z = x e−i2π/3 on the lower ray and z = x ei2π/3 on the upper ray (note
that x is a real variable) gives

Fn = 3

4π i

∫ ∞

0

[
e−i2π/3 Ai′(e−i2π/3x)

Ai(e−i2π/3x)
− ei2π/3 Ai′(ei2π/3x)

Ai(ei2π/3x)

]
x3(n−1)/2 dx. (20)

Using the important and very useful identity [19],

Ai(z e±2π i/3) = 1
2 e±π i/3[Ai(z) ∓ i Bi(z)], (21)

this can be simplified to give

Fn = 3

4π i

∫ ∞

0

[
Ai′(x) + iBi′(x)

Ai(x) + iBi(x)
− Ai′(x) − iBi′(x)

Ai(x) − iBi(x)

]
x3(n−1)/2 dx

= 3

2π

∫ ∞

0

[
Ai(x)Bi′(x) − Ai′(x)Bi(x)

Ai2(x) + Bi2(x)

]
x3(n−1)/2 dx. (22)

Finally, noting the form of the Wronskian [19],

W {Ai(z), Bi(z)} ≡ Ai(z)Bi′(z) − Ai′(z)Bi(z) = 1

π
, (23)

this reduces to the desired result (12). The reason for the original choice of contour is now
clear; it enables the identity (21) to be exploited in the manner indicated.

Having derived (12), the derivation of (13) is carried out in much the same manner. Noting
that the zeros of the function Ai′(z) are also restricted to the negative real axis [19], this time
we consider the function z1/2Ai(z)/Ai′(z) on the cut-plane C\(−∞, 0] and write

z1/2 Ai(z)

Ai′(z)
=

N∑
k=0

(−1)k+1Gkz
−3k/2 + R

(g)

N (z), |arg(z)| < π, (24)

where G0 ≡ 1 and Gk for 1 � k � N is chosen from the sequence generated by (4) or (9).
The calculation proceeds exactly as before using the same logic to the point where one has
established that for n � 1,

Gn = (−1)n+1 3

4π i

∫
>

Ai(z)

Ai′(z)
z(3n−1)/2 dz. (25)

Again, taking the parametrization z = x e−i2π/3 on the lower ray and z = x ei2π/3 on the upper
ray, this gives

Gn = 3

4π i

∫ ∞

0

[
ei4π/3 Ai(ei2π/3x)

Ai′(ei2π/3x)
− e−i4π/3 Ai(e−i2π/3x)

Ai′(e−i2π/3x)

]
x(3n−1)/2 dx. (26)

Using (21) this simplifies to

Gn = 3

2π

∫ ∞

0

[
Ai(x)Bi′(x) − Ai′(x)Bi(x)

Ai′2(x) + Bi′2(x)

]
x(3n−1)/2 dx (27)

and using (23) this reduces to (13). It should be emphasized that (12) and (13) are exact for
all n � 1. To satisfy our curiosity, we have checked them both numerically up to n = 20.

5
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4. Comments and further analysis

The derivations complete, we offer the following observations and analysis

(i) The symmetry exhibited between Ai(z) and Bi(z) in (12) and (13) is revealing. At one
level it is an expression of the fact that the functions Bi′(z)/Bi(z) and Bi(z)/Bi′(z) obey
the same Riccati equations as Ai′(z)/Ai(z) and Ai(z)/Ai′(z) respectively, albeit with
different boundary conditions. The corresponding asymptotic expansions as |z| → ∞
are given by

Bi′(z)
Bi(z)

∼ z1/2

[
1 −

∞∑
n=1

Fnz
−3n/2

]
, |arg(z)| <

π

3
(28)

Bi(z)

Bi′(z)
∼ z−1/2

[
1 +

∞∑
n=1

Gnz
−3n/2

]
, |arg(z)| <

π

3
(29)

and although these are different to (1) and (2), they involve the same coefficients Fn and
Gn. For completeness, expansions (28) and (29) can also be obtained from the asymptotic
expansions of Bi(z) and Bi′(z) as |z| → ∞ [19],

Bi(z) ∼ 1√
π

z−1/4 e
2
3 z3/2

[
1 +

∞∑
n=1

cnz
−3n/2

]
, |arg(z)| <

π

3
(30)

Bi′(z) ∼ 1√
π

z1/4 e
2
3 z3/2

[
1 −

∞∑
n=1

(
6n + 1

6n − 1

)
cnz

−3n/2

]
, |arg(z)| <

π

3
, (31)

with cn given by (7). At a deeper level, this symmetry suggests that the extended
functions F(z) and G(z) (which can be inverted using the inverse Mellin transform)
are a fundamental manifestation of the Airy–Riccati equations themselves rather than
any particular solution thereof. As such, they are probably deserving of further study.
One is struck by analogies with other functions, the simplest being the Gamma function
whose integral representation �(z) = ∫ ∞

0 xz−1 e−x dx is of Mellin type and for which
�n ≡ �(z = n) has the elementary recursive form �n = (n − 1)�n−1.

(ii) The solutions for Fn and Gn provide an efficient way of studying the n → ∞ limit. The
starting observation (easy to prove) is that as n → ∞ the integrands of both (12) and (13)
reach a maximum at xm = (3n/4)2/3 + O(n−1/3). Using elementary asymptotic methods
an expansion can thus be obtained based on (30) and (31) alone, since Bi(xm) 	 Ai(xm)

and Bi′(xm) 	 |Ai′(xm)|. Retaining the first three terms of (30) and (31) in conjunction
with (12) and (13) is sufficient to establish that

Fn = 1

π

(
3

4

)n

(n − 1)!

[
1 − 5

18n
− 335

648n2
+ O

(
1

n3

)]
(32)

Gn = 1

π

(
3

4

)n

(n − 1)!

[
1 +

7

18n
+

553

648n2
+ O

(
1

n3

)]
. (33)

The leading terms agree with those presented in [3–5], whilst the second term in (32)
appears in [8]. Those studies were based on a delicate analysis of the recursion relations
(3), (4), (8) and (9). Evaluating the higher order terms is much easier using the present
approach.

6
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(iii) One can define integer sequences through fn ≡ 23n−1Fn and gn ≡ 23n−1Gn. Thus f1 = 1,
f2 = 5, f3 = 60, f4 = 1105, f5 = 271 20 etc and g1 = 1, g2 = 7, g3 = 84, g4 = 1463,
g5 = 339 36 etc. With reference to (3) and (4) these sequences are generated recursively:

fn = (6n − 8)fn−1 +
n−1∑
k=1

fkfn−k, f0 ≡ −1

2
(34)

gn = (6n − 4)gn−1 −
n−1∑
k=1

gkgn−k, g0 ≡ 1

2
. (35)

The sequence for fn is documented as A062980 in [20] and it appears explicitly in several
of the problems discussed earlier [12, 15–17]. As a consequence of (12) and (13) we have
the following solutions (after a simple change of variable):

fn = 1

π2

∫ ∞

0

xn−4/3

Ai2
(

1
4x2/3

)
+ Bi2

(
1
4x2/3

) dx (36)

gn = 1

4π2

∫ ∞

0

xn−2/3

Ai′2
(

1
4x2/3

)
+ Bi′2

(
1
4x2/3

) dx. (37)

These results make a striking impression. As an exercise in analytic combinatorics [21]
there is also the prospect that solutions to other integer sequences generated by self-
convolutive recursions might be found using the same basic technique. This will be
pursued elsewhere. The growth of fn and gn as n → ∞ follows directly from (32) and
(33) after scaling by a factor of 23n−1.

5. Conclusions

In summary, simple, closed-form solutions (expressed as Mellin transforms of given functions)
have been derived for the coefficients entering the asymptotic expansion of the logarithmic
derivative of the Airy function Ai′(z)/Ai(z)and its reciprocal Ai(z)/Ai′(z) as |z| → ∞. This
is of direct interest in the context of a variety of problems. In addition, several avenues for
further research have been suggested, extending both the results and the method used to obtain
them. As to why the main results in this paper are not already well established, one can
speculate that a natural reluctance to believe that the calculation would yield a useful answer
has prevented researchers from trying. With the benefit of hindsight the analysis is quite
straightforward, so extensions in other directions should be perfectly feasible.
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